Effect of Different Design Parameters On Lift, Thrust and Drag of an Ornithopter

نویسندگان

  • M Afzaal Malik
  • Farooq Ahmad
چکیده

Research in the field of Flapping Wing Micro Air Vehicle (FMAV) is an ongoing quest to master the natural flyers by mechanical means. The field is characterized by unsteady aerodynamics, whose knowledge is still developing. Birds and insects have different methods of producing lift and thrust for hovering and forward flight. Most birds, however, cannot hover. Wing tips of birds follow simple paths in flight, whereas insects have very complicated wing tip paths, for hovering and forward flight, which vary with each species. FMAV based on avian flight is called ‘Ornithopter’ and that based on insect flight is known as ‘Entomopter’. The kinematics of real birds are difficult to be mimicked because of extreme complexities involved and weight limitation of an ornithopter. Simple flapping of wings with suitably chosen parameters, and overall light weight, can produce required lift and thrust. Thus most of the successful ornithopters are designed only with flapping mechanism having flexible membrane wings. The flexibility of the wings causes passive pitching movement during flapping which improves the performance. Flapping frequency, flapping amplitude, incidence angle, flexibility of wings and their geometry are the important design parameters for an ornithopter. In this paper Modified Strip Theory based on blade elemental analysis has been used to develop the aerodynamic model for semi-elliptical wing form. Parametric study has been carried out to show the effect of different parameters on lift, thrust and drag forces for better understanding of ornithopter flight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Lift and Drag Forces for Some Conical Bodies in Supersonic Flow Using Perturbation Techniques

Numerical methods are not always convergent especially in higher velocities when shock waves are involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three different cross sections circular, elliptic and squircle (square with rounded corners) shaped using  Perturbation techniques to find flow variables analytically. In order to find lift and drag forc...

متن کامل

Further development of the kinematic and aerodynamic modeling and analysis of flapping wing ornithopter from basic principles

The basis of this work was to understand the generation of lift and thrust of a flapping biwing ornithopter, which is influenced by its geometrical, dynamic, kinematic and aerodynamic features by following a generic approach in order to identify and mimic the mechanisms. As further development of earlier work, three-dimensional rigid thin wing is considered in flapping and pitching motion using...

متن کامل

Effect of environmental parameters on the amount of scour in marine structures

Scour is a phenomenon that occurs as a result of natural erosion by ground water flow and transport of seabed material. In this research, scour around the legs of marine structures is simulated using the FLOW3D.V.9.3™ commercial software. The general scour model consists of two components, namely, the lift and thrust forces. The drag force, that is inserted to the structure, is a combination of...

متن کامل

Numerical simulation of hydrodynamic properties of Alex type gliders

Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider and to obtain an accurate result, this simulation has been studied at a range of operating velocities. The total length of the underwater glider with two wings is 900 ...

متن کامل

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010